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he concept of coherent probabilities and conditional probabilities through a gambli‘ng argument an.d through
Ta paralle] argument based on a quadratic scoring rule was introduced by de Finetti (de Finetti, B. 1974.
The Theory of Probability. John Wiley & Sons, New York). He showed that the two arguments lee'u:l to the same
concept of coherence. When dealing with events only, there is a rich class of scoring rules that n:ught be used in
place of the quadratic scoring rule. We give conditions under which a ge.nera} strictly proper scoring rule can
replace the quadratic scoring rule while preserving the equivalence of de Finetti’s two arguments. In proving our
results, we present a strengthening of the usual minimax theorem. We also present generalizations of de Finetti's
fundamental theorem of probability to deal with conditional probabilities.
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1. Introduction -

1.1. Background
There are two different elicitation methods that lead
to subjective probability. The first is through fair bet-
ting odds. What is a price at which you would buy
or sell a ticket that would pay $1 if it rains tomor-
row in your city, and nothing if it does not? If you
say $0.30, then we take your probability of rain to be
30%. Put in mathematical terms, if A is the event in
question, and I, is the indicator random variable for
the event A (1 if A occurs and 0 if A® occurs), then
c{I, — P{A)] is the payoff for buying c tickets if ¢ >0,
or selling ¢ tickets if ¢ < 0. Here, P(A) is that num-
ber (0.3 in the example above) that leaves you, as the
Decision maker, indifferent as to whether ¢ is positive
or negative. Then P(A) is taken to be your probability
of A

The second elicitation method uses the Brier (1950)
score (squared-error loss) to find a value for P(A).
Suppose that a forecast p for the event A is penalized
by the loss (I, —p)?. Then the expected loss is

P(AY(1—pY +(1—P(A)p.

Simple differentiation shows that the unique optimal
choice of p is p = P(A).
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Both of these methods can be generalized to deal
with conditional probabilities. The first would seek
a number P(A | B) such that you are indifferent
to the sign of ¢ if faced with a gamble paying
¢Ip[1, — P(A| B)). The second would minimize the loss
I;iI, — p)*. Note that when B = {} (the sure event),
the conditional case specializes to the unconditional
one. Because our results apply to the conditional case,
we use it throughout. Conditional probabilities are a
useful, if not vital, tool for eliciting joint distributions
and tails of distributions. Kadane et al. (1980} showed
how conditional probabilities can help to elicit prior
distributions in regression problems.

Both of these elicitation methods were proposed by
de Finetti (1974), and each of them has its own dis-
advantages. de Finetti (1981, 1974, p.. 93) was uncom-
fortable with the first method because the decision
maker might try to guess whether an “opponent”
would choose ¢ > 0 or ¢ < 0, and then might mod-
ify the elicited P(A) accordingly. This introduces an
unwelcome strategic aspect to the first method.

The second method is peculiar because it appears
to rely on the Brier score so directly. Would some
other loss function destroy the equivalence between
the two methods? For example, §3 of Schervish (1989)

Schervish, Seidenfeld, and Kadane: Proper Scoring Rules, Dominated Forecasts, and Coherence

Decision Analysis 6(4), pp. 202-221, © 2009 INFORMS

203

discusses how a decision maker can construct a loss
function that reflects what is important to her/him in
the elicitation of each probability. It would be comdort-
ing if all such loss functions inherited the important
properties of squared-error loss while allowing more
flexibility to choose a relevant loss. We give some
examples below (Examples 3 and 4) fo illustrate why
and how a decision maker might choose alternative
loss functions. The results given in this paper, grow-
ing out of several previous research efforts, aim to
give conditions on loss functions under which the two
elicitation methods coincide. Essentially, the methods
coincide if the loss function corresponds to a strictly
proper scoring rule (a generalization of the Brier score
as defined in Definition 3) that satisfies a few mild
assumptions, which we state in §2. We give several
examples in §4 to show what can go wrong if the
assumptions do not hold.

1.2. Notation and Definitions

The uses of the Brier score and betting to elicit a
probability extend naturally to the elicitation of an
arbitrary number of probabilities and/or conditional
probabilities. Conditional probability can be thought
of as a function of two events, i.e., P(A | B). When
B =), we can refer to P(A | {}) = P{A) as a marginal
probability. For the remainder of this paper, when we
refer to probabilities unqualified, we mean both con-
ditional and marginal probabilities.

To be able to deal with arbitrary collections of
marginal and conditional probabilities simultane-
ously, we introduce some notation. Let X be an index
set, and let % = {{A,, B,): @ € R} be a set of pairs of
events. For each @ € 8, A, is a subset of {1, and B,
is a nonempty subset of . For each (A, B) € %, the
decision maker is required to provide a real-valued
(conditional) probability P(4 | B). '

DegintTioN 1 (COHERENCE;). A set of elicited prob-
abilities is incoherent; if there exists a finite sub-
set {ay,...,) of R and corresponding values
{Cays v s q) s0 that the net payoff to the decision
maker is uniformly negative in all states o € Q. That
is, there exists € = ( such that, for all w €},

k
ZCQ;IB(,i [IAuf(w) - P(Aa,— I Ba,»)] < €. (1)
i=1

The elicited probabilities are called coherent; other-

" wise. If (1) occurs, we say that book has been made

against the decision maker.

Thus, coherence; is the requirement fhat the
decision maker’s elicited probabilities cannot be
(uniformly) dominated by the status quo, correspond-
ing to the state of neither buying nor selling such
gambles. Coherence; is a rationality condition on
probabilities elicited by the first method of §1.1.
Throughout this paper, we will refer to elicited prob-
abilities as forecasts for the {ollowing reason. When
elicited probabilities are incoherent,, they do not sat-
isfy the axioms of probability theory. Hence, it seems
awlkward to call them probabilities.

ExAaMPLE 1. Let C be an event, and suppose that an
agent provides the following forecasts: P(C| Q)=0.3
and P(C° | {1) = 0.5. In the notation of Definition 1,
we have k=2, A, =C, B,=Q, A, =C¢ and B, = .
Choaosing ¢, == ¢, = —1 in (1) gives us

2
2 ¢ilp, [IA,-(OJ) — P(A; | Bl

i=1

- 71(: (w) + 0-3 - IC(' (w) ‘i_ 0.5 _ _0.2

for all w. Hence, the forecasts are incoherent,.

There is an analogous rationality condition on fore-
casts that are elicited by the second method of §1.1.
Let L = (I, —p)* stand for the loss (or score) suffered
by an agent who forecasts p as the conditional prob-
ability of A given B. The loss given to a finite set of
forecasts {P(A,, | B,,), ..., P(A, | B,,)} is the sum of
the losses for the individual {orecasts.

Derinrrion 2 (COHERENCE,). A set of forecasts is
incoherent, if for some finite subset of those forecasts
there exists an alternative set of forecasts that result
in a (uniformly) smaller loss in all the states w € .
The set of forecasts is called coherent, otherwise.

Thus, coherence, is the requirement that no finite
subset of the decision maker’s forecasts can be {uni-
formly) dominated by a rival set of forecasts in terms
of squared-error loss.

ExanrLE 2 (CONTINUATION OF EXAMPLE 1). The sum
of the squared-error losses for the two stated forecasts
in Example 1 is

_Jora iwec

_ 2 _ 2
[Ic(w) — 0.3 + [Iee(w) — 0.5F = 030 if oo cr

(2)
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The following coherent, forecasts result in uniformly
smaller loss: P(C | Q) = 0.4 and P(C* | £) =06 The
sum of the losses for these forecasts is

0.72 ifoeC,

w) —0.4] {w) —0.6]" =
(@) —0.4)" + [feo(@) —0.6] {0.32 if we s,

which. is uniformly smaller than (2). Hence, the orig-
inal forecasts are incoherent,.

‘De Finetti (1974, pp. 88-89, 188-190) gave a geomet-
ric argument to show that a set of marginal forecasis
is coherent; if and only if it is coherent,. Examples 1
and 2 illustrate this equivalence. Natural questions
arise as to whether other loss functions might be
appropriate replacements for squared error in Defini-
tion 2, and whether the equivalence to Definition 1
continues to hold. We address these questions in
detail in this paper.

The definition of coherence, is very weak. That is,
many forecasts are coherent,, including some that
might seem undesirable. For example, suppose that
one makes only two forecasts, P(4, | B) = 0.9 and
P(A, | B) = 0.7. Suppose also that B#Q and A N
A, =¢. These forecasts are coherent because no book
can be made against them. In particular, every com-
bination of the form (1) takes the value 0 for all
w e BC. Because B # €, it is possible to coherently
assign P(B | Q) = 0 (see Theorem 5). However, one
might be uncomfortable giving conditional forecasts
(conditional on the same event} to disjoint events
that add up to more than 1. Some authors have sug-
gested strengthening the definition of coherence to
make it less liberal concerning conditional forecasts
given events whose forecasts either are 0 or might
coherently be assigned the value 0. Cozman and
Seidenfeld (2009) provided a critical survey of some
suggested strengthenings. Krauss (1968) and Dubins
(1975) showed that for every finitely additive proba-
bility there exists a collection of coherent, conditional
forecasts that also satisfies the axioms of probability
conditional on events with 0 probability. That is,

P(-|B) is a probability measure for
every B+#£ &,

P(B |B) =1 for every B#£ 4, (3)

P(ANC|B) =P(C|BP(A|BNC) for all A, B,
and C such that BNC#@.

Coherence, implies the conditions in (3) for all B
with P(B| Q) > 0. Cozman and Seidenfeld (2009)
showed that if one tries to impose conditions like.
(3), even when P(B| ) =0, then other undesirable
consequences will follow. In this paper, we have not
required that conditional forecasts satisfy additional
requirements such as (3) when P(B| Q) =0 is either
stated or allowed (by extension via Theorem 5). The
reason is that our results do not depend on whether
the additional requirements hold. Whether different
results hold if one further restricted the concept of
coherence to require such additional properties is an

" open question.

Regarding the problem of strategic play in eliciting
a decision maker’s forecasts, which affects coherence;,
that concern is mitigated using coherence, because,
under squared-error loss, the decision maker uniquely
minimizes her/his expected loss for a set of fore-
casts by announcing the (subjective) probability for
each event as the forecast. The Brier score is one of
many strictly proper scoring rules (defined immedi-
ately below) that have this same feature of minimiz-
ing the expected score at the probability of each event.

DEFINITION 3 (ScorING RuLES). A scoring rule for
scoring the conditional forecast P(A|B) of an event A
given another event B is a pair of extended real-
valued functions (g,, g1) defined on the interval [0, 1]
with the following understanding. If A occurs, the
forecaster suffers a loss of Ligi(P(A|B)), and if A®
occurs, the forecaster suffers a loss of Iy go(P{A | B)).
The scoring rule (gy, §1) is proper if, for all events
A and B, the forecaster’s subjective conditional proba-
bility of A given B minimizes the expected score. That
is, (g4, £1) is proper if x=p minimizes {1 —p)go{x) +
pg,(x) for each 0 <p = 1. A proper scoring rule (g, g1}
is strictly proper if, for all 0=p <1, x=p is the only
value of x that minimizes (1 — p)go(x) + pgi(x). For
convenience, if a proper scoring rule is not strictly
propet, we call it merely proper.

When B # Q, the expected score mentioned in Def-
inition 3 is P(B) times the conditional expected score
given B. As mentioned earlier, some issues arise if
P(B) =0, but most of them do not affect the results of
this paper. To avoid the one issue that does affect our
results, we assume that 0 < P(A|B) <1 for every pair
(A, B) of events with B # @. We malke this assump-
tion because many proper scoring rules do not extend
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naturally to forecasts outside of the unit interval.
Although it is part of our goal to deal with incoherent
forecasts, we cannot allow them to be quite so inco-
herent if we wish to apply proper scoring rules.

1.3. . History and a Preview of Results

Savage (1971) generalized de Finetti’s (1974) use of
squared error loss in Definition 2 and characterized
a general class of (strictly) proper scoring rules for
eliciting personal probabilities for events. Murphy
(1972) and Murphy and Epstein (1967) applied scor-
ing rules to the evaluation of weather forecasters,
whereas Gneiting and Raftery (2007) give an overview
of scoring rules in a more general setting together
with an application. ‘

Savage (1971) did not devote much detail to the
argument that the other proper scoring rules also
agree with the criterion in Definition 1 in demarcat-
ing coherent from incoherent sets of forecasts. Predd
et al. (2009) established that, for the case of finitely
many marginal forecasts, de Finetti’s (1974) geomet-
ric a.rgument extends to all continuous strictly proper
scoring rules. That is, with each continuous strictly
proper scoring rule, if a finite set of marginal forecasts
is incoherent,, then it is dominated in score by some
coherent, set of forecasts. And no finite coherent, set
of marginal forecasts can be so dominated.

Derntrion 4 (Dominance). Let (A}, By),...,
(A,, B,) be a finite collection of pairs of events such
that each A; is to be forecast conditional on B;. Sup-
pose that the conditional forecast of A; given B; is
t'o be scored by the scoring rule (g 4, 5, 81,4, 5,) for
i=1,...,n Define gl 5(x, 0} =L (@)g1 4. 50) +
Tagon (9)80,4,5,). Let p = (p1,...,p,) and q =
(1, .-+, 4,) be two different sets of conditional fore-
casts for the n events. We say that q weakly dominates
pif, forall we ),

Zl‘gii,-,s,-(‘hf w} =< ngqi,af(Pi: w), 4
i= . i=1

with strict inequality for at least one w. We say that
q strictly dominates p if (4) holds for all @ with strict
inequality for all .

In this paper, we extend the result of Predd et al.
(2009) to conditional forecasts, we relax the assump-
tion that the scoring rules be strictly proper, we
allow more than finitely many forecasts, and we relax

the assumption that the scoring rules be continuous.
Although our results apply to arbitrarily sized col-
lections of forecasts, the concept of dominance from
Definition 4 is applied to each finite subcollection.
This is a direct analogy to Definition 1 in which the
coherence, or incoherence, of an arbitrary collection
of forecasts is assessed by examining each finite sub-
collection. We also allow each forecast to be scored
by a different scoring rule. Predd et al. (2009) make a
passing remark that this is possible. They also make
a passing remark concerning merely proper scoring
rules and weak dominance. We prove a stronger ver-
sion of that remark (Theorem 3).

The need for discontinuous scoring rules would
arise in a situation like the following.

Examrre 3. An agent faces a decision problem in
which the best action depends to a large extent on
whether the probability of some event A is greater
than or less than 1/2. The agent consults an expert
before determining P(A | ). The agent wants to hear
the expert’s subjective probability of A and so ties the
expert’s fee to a strictly proper scoring rule. To get
the expert to be careful about on which side of 1/2
the probability of A lies, she chooses a scoring rule
with a jump discontinuity at 1/2 such as

x? if x <1/2,

§o,4,0(0) =
! {1/2+x2 if x> 1/2

124+ (1—xy ifx=<1/2

&1, ,s(x =
ol {(I—x)2 if x> 1/2.

This is just the Brier score with a jump of 1/2 at
x =1/2. (We prove that it is strictly proper in Exam-
ple 8.) Every strictly proper scoring rule should give
the expert incentive to provide her subjective proba-
bility of A. But if an expert has limited attention to
pay to the task, the scoring rule in this example will
focus the expert’s attention on the important range of
possible answers.

There is a second, decision-theoretic line of argu-
ment relating to the equivalence between the two
senses of coherence, however, that was anticipated
by de Finetti (1972, pp. 181-182) and sketched with-
out much detail by Savage (1971, §88 and 9.1). Con-
sider a decision problem comprising a set of options
@ and subject to a loss function {bounded below)
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defined with respect to the finite partition ®. If an
option O* fails to be a Bayes solution to the prob-
lem, i.e., if for each probabﬂity on ©, O* fails fo min-
imize the expected loss with respect to the options -
in @, then some randomized rule with support in@
strictly dominates O*. This result was established by
Pearce (1984, Lemma 3, p. 1049) for the case in which
@ is finite. Here we extend this reasoning to statisti-
cal problems where © is finite, i.e.,, where “Nature”
has only f{initely many nonrandomized options, but
the “Statistician” has a continuum of nonrandomized
options. We apply the extension to decision problems
in which the options ate sets of forecasts and the loss
function is the sum of the scoring rules.

In the remainder of this article we identify those
cases in which an incoherent collection of forecasts is
weakly or strictly dominated by a coherent collection
of forecasts or by something else. The cases depend on
whether the scoring rules are proper of strictly proper,
and/or continuous or discontinuous. The cases also
depend on whether or not the incoherent forecasts are
Bayes decisions in the decision problems described
in the previous paragraph. One consequence of what
we prove is that Definitions 1 and 2 remain equiva-
lent even if one replaces the Brier score by any col-
lection of strictly proper scoring rules (one for each
event being forecast) satisfying some mild assump-
tions. When the scoring rules are continuous, there
is a coherent, set of forecasts that strictly dominates
each finite incoherent; set of forecasts, just as with the
Brier score. However, we illustrate that when the scor-
ing rules are discontinuous (and even though strictly
proper), there may fail to be a coherent, set of fore-
casts that weakly dominates a particular incoherent,
set of forecasts.

2. Summaty of Results

As we noted earlier; scoring rules are like loss func-
tions. Loss functions play a key role in statistical deci-
sion theory that was introduced by Wald (1950). For
this reason, we can make use of theorems from statis-
tical decision theory to prove our results about fore-
casts and scoring rules. For an overview of statisti-
cal decision theory, see Chapter 3 of Schervish (1995).
For each finite collection.st = {(A(, By), ..., (Axs B} of
pairs of subsets of () with B; # &, we construct a deci-
sion problem whose action space is the set of vectors

of forecasts for the A; given B;. In each such decision
problem, we check whether a particular set of fore-
casts is a Bayes decision with respect to some prior
distribution, that is, whether the forecasts minimize
the expected score under some probability on .

The standard theorems of statistical decision the-
ory usually assume that the loss function is bounded
below. In our setting, this would correspond to
assuming that the scoring rules are all bounded
below. There are several good reasons for making
such an assumption, one of which is illustrated in
Example 5 in §4. Adding a finite constant to either or
both branches of a proper scoring rule does not affect
any of the properties that we are studying, i.e., merely
proper versus strictly proper, continuity, dominance,
or forecasts being Bayes. Tor this reason, assuming
that scoring rules are bounded below is equivalent,
for our purposes, to assuming that the greatest lower
bound is 0. It is trivial from Definition 3 that every
proper scoring rule (g, ;) satisfies the following:
go(x) is minimized at x = 0, and g, (x) is minimized
at x = 1. Hence, we lose no generality in assuming
that g,{0) = &;(1) =0. To summarize, we assume the
following of proper scoring rules:

AssuMpTION 1. For k=0,1, g is bounded below, and
20(0) = (1) =0.

There are two other assumptions that play roles
in some of our results, and we state them here for
completeness.

AssumpTioN 2. For k= 0,1, g(x) is continuous at
x=Kk.

AssuMPTION 3. For k = 0,1, gf{x) is finite for
Dex<l.

Predd et al. (2009) included all three assumptions
in the definition of a proper scoring rule. Although
there do exist proper scoring rules that fail each of
the assumptions, we give examples in §4 to illustrate
which parts of our results rely on each assumption.
Assumption 3 is satisfied by all strictly proper scoring
rules (see Lemma 3).

ExaMPLE 4 (LOGARITHMIC SCORE). A popular alter-
native to the Brier score is the logarithmic scoring rule
defined as

golx) = —log(1—x) and g (x)=—log(x).
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It is straightforward to verify that this scoring rule is
strictly proper and that it satisfies all three assump-
tions above. A decision maker might choose this
scoring rule if forecasts that are almost opposite to
what occurs are neatly catastrophic. For example, this
might be the case if a forecast close to 0 for an event
that occurs is many orders of magnitude worse than
a forecast of 1/2 for that same event.

If every conditional forecast has a corresponding
scoring rule, and the loss is the sum of all the scores
we can generalize Definition 2 for event forecasts. ’

DerntTioN 5 (CORERENCE; ). A collection of condi-
tional forecasts for events is incoherent, if for some
finite subcollection of those forecasts there exists an
alternative set of forecasts that strictly dominates in
the sense of Definition 4. The collection of forecasts is
called coherent, otherwise.

The question then arises as to whether or not
coherence; is equivalent to coherence; in all forecast-
ing problems. The answer depends on which scor-
ing rules one allows. It also depends on what one
allows for an “alternative set of forecasts.” Tt turns
out that allowing a randomized forecast to serve as
the alternative expands the collection of scoring rules
that make coherence; and coherence, equivalent. (We
are more explicit about what we mean by a random-

ized forecast in Definition 8.) For example, we prove
the following:

TorOREM 1. Assume that each conditional forecast is
scored by a strictly proper scoring rule that satisfies
Assumptions 1 and 2.

o If randomized forecasts are allowed, then coherence,
and coherencey are equivalent in every forecasting problem.

o If only nonrandomized forecasts are allowed and if
all scoring rules are also continuous, then coherence, and
coherence, are equivalent in every forecasting problem.

The proof of Theorem 1 appears in the appendix.
We provide an example (Example 8) to illustrate
that one cannot, without further assumptions, obtain
a dominating nonrandomized forecast when using
discontinuous strictly proper scoring rules. We also
provide an example (Example 7) to illustrate that
incoherent; forecasts may not be strictly dominated,
without further assumptions, when using - strictly
proper scoring rules that violate Assumption 2.

We prove additional results about the possibility of
one set of forecasts being dominated by another. For
example, Theorem. 2 includes conditions under which
‘dominan(:e occurs with the use of merely proper scor-
ing rules. Theorem 2 also includes conditions under
which a weakly dominating, possibly randomized
forecast exists. Theorem 3 gives conditions under
which an incoherent, set of forecasts gets scored iden-
tically to a coherent, set of forecasts. .

3. Mathematical Framework for
Results

As mentioned earlier, we make use of some standard

results from statistical decision theory, and hence we

want to express the problem of comparing forecasts

using proper scoring rules as a statistical decision
problem.

3.1. Decision-Theoretic Framework

Each decision problem is indexed by a finite collec-
tion ¢4 ={(A,, B)), ..., (A,, B,)} of pairs of subsets of
a set ) with all B; nonempty. The parameter space for
each decision problem is the collection of constituent
events determined by ${, as defined here.

DermviTioN 6 (ConsTITUENTS)., Let Ay, ..., A,
B, ..., B, be events. Construct the (at most 3"} events
C;=E, ;N NE,; where each E; ; € {A;NB;, AT N
B, BS) for i=1,...,n Let aj) =1 if L, . = A, B,
and let a;(f) =0 if not. Also, let b,(j) = 1’I1'_t' E  C Br
and b;(j) =0 if E; ; = Bf'. The distinct nonempigz gets:
Cy, ..., C, of this form are called the constituents. |

The action space for the decision problem indexed
by s is the set [0, 1]", where the ith coordinate is
interpreted as the conditional forecast for A; given B;.
The loss function is the total score from a collection ozf
scoring rules, as in Definition 4, and which we make
more explicit here,

DeriniTION. 7 (TOTAL ScoRres). Let s = {(A,, B;), ...,
{A,, B,)} be a finite collection of pairs of events with
all B, nonempty. Suppose that, for each i, the condi-
tional forecast for A; given B, is scored by a proper
scoring rule (g 4, 581, 4,8) Let p=(py, ..., p,) be
a vector of conditional forecasts. The fofal scores for
these forecasts are defined as follows. For each con-
stituent C;, the total score is constant on C; and equals

d =3 b (8uy, 4,5 P = Ie (@) 280, 5, (P @), (5)
i=1

i=1

=
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where 2,(j) and b,(j) are defined in Definition 6, and
g’ 5 is defined in Definition 4.

To avoid ambiguity, we are explicit about what we
mean by randomized rules (which we call random-
ized forecasts) in these decision problems.

Degintrion 8 (Ranpomizep Forecast). Let  {(Aq,
B),....{A, B} be a finite collection of pairs of
events. A randomized forecast is a probability measure
§ on [0,1]" to be understood as the joint distribu-
tion of a random vector of conditional forecasts
for (A, ..., A,) given (B, ..., By, respectively. The
tatal scores for the randomized forecast § are, for
j =1 e IR,

f
= b8 4@ (O
0.1 i

The definition of total scores in Definition 8 matches
the definition of the loss function for a randomized
rule in statistical decision theory. Of course, a non-
randomized forecast p can be interpreted as a ran-
domized forecast § by letfing 8({p}) =1. In thils case,
(5) and (6} are the same.

Definition 9 summarizes the above construction of
a decision problem.

DeFmITioN 9 (PROBLEM sf). Let  be a space. For
cach pair (A,B) of subsets of Q) with B # @i %et
(S0, 4.8, §1, 4,8) be a proper scoring rule, For each finite
collection o€ = {(A;, B), ..., (A,, B,)} of pairs of sub-
sets of 0 with all B; nonempty, define the following
decision problem {(called problem ). The parameter
space is @={C,, ..., C,}, the constituents from Defi-
nition 6; the action space @ is [0, 1]", the set of all vec-
tors p of possible conditional forecasts for A, ..., f%,,
given By, ..., B,, respectively; and the loss function is
the total score. A randomized forecast § is Bayes i
problem i if there exists a probability distribution q =

(G, -, Gy) Over @ such that 8 minimizes the expected-

loss, i.e.,
qu jzigfiiqu[ﬂ 1" §bi(j)ga;(j),A;,B,~(Pi)5* {dp), (7)
j=1 j= A i

where the inf is over all randomized forecasts &8”.
The st in Definition 9 can be any finite collection
of pairs of events. If € is another finite collection,
problem: % can be defined analogously.
Some simplification of the expression in (7) is pos-
sible. Tirst, use the standard notation for the loss

function of a randomized rule to denote, for each
randomized rule 8,

gﬂ;(il,A;,B;(a) =][0"1]" gﬂi(i)'AirBi(pi)B (dP) _

Next, let R be the probability that extends g to the
algebra of events generated by ©. In particular,

R(ANB) = L a((y; and

j=1

R(AY B} = i[l — a (D)

=1

Then (7) becomes

il

Y AR(A; N B)g1, 4,5,(8) + R(Af N B,)go, 4,,5(5)}

=1
= j{;f 3 {R(A; N B8y, 4, 5,(8)
i=1
+R(A} NB;)go, 4, 5,8, (8)

a more familiar formula indicating that 8 minimizes
the expected total score. If § is the nonrandomized
forecast p, then (8) becomes

n

Y {R(A; N By, 4, 5P + R(AY NB)go, 4,8 P}

i1
= inf Y {R(A;NB)g1, 4,5 (%)
+ R(Af (1B))&o, a,, 5, ()} ©

The reader should note that Definition 9 assumes that
the scoring rule used to score the conditional fore-
cast of A given B is the same every time that (A, B)
appears in a finite subcollection 5.

3.2. Equivalence of Definitions of Coherence
Because we deal with arbitrarily sized collections of
forecasts, we want to be able to classify each such
collection as Bayes or not in a manner similar to
how an arbitrary collection of forecasts is classified as
coherent; or not.

DeriNtrioN 10 (Baves FORECASTS). Suppose that an
agent must produce a conditional forecast for A given
B for each pair of events (4, B} in the collection ‘.
Suppose that, for each (A, B) € 6, the conditional
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forecast for A given B is scored by a proper scoring
rule (gy A s 81, 4,8). We say that a randomized fore-
cast 8 is weakly Bayes if, for every finite subcollection
ot = {(Aq, By), ..., (A,, B)] € %6, & is Bayes in prob-
lem s1. A weakly Bayes forecast & is strongly Bayes if
there exists a finitely additive probability R on (Q, 2%)
that satisfies .

n

Y AR(A;NBy) g, 4., 5,(8) + R(AF N B;)go, 4., 5 (8)}
i—1

H

= Z{R(A;’ NB)g, a5 (R(A; [ B))
i=1

+R(A; NBy)g,, A5 (R(A | B))} (10)

for every finite subcollection 5.

-Weakly Bayes forecasts turn out to be the ones that
are coherent,, :

Lemwma 1. If a collection of forecasts is weakly Bayes,

then the forecasts in no finite subcollection are strictly
dominated.

The proof of Lemnma 1 and the proofs of all other
results stated in this section appear in the appendix.

Table 1 summarizes our results about the exis-
tence of dominating forecasts depending on what we
assume about the scoring rules.

Lemma 1, together with the results in the second
and third rows of Table 1, allow us to derive the fol-
lowing two results:

CoroLLary 1. Assume that all scoring rules satisfy
Assumptions 1-3 and that randomized forecasts are
allowed. Then, a collection of forecasts is weakly Bayes if
and only if it is coherent,.

CoroLLARY 2. Assume that all scoring rules satisfy
Assumptions 1 and 3 and are continuous, Also assume
that only nonrandomized forecasts are allowed. Then, a

collection of forecasts is weakly Bayes if and only if it is’
cohereitts. :

What remains, to establish Theorem 1, is to show
that weakly Bayes is equivalent to coherent;. Our

- result assumes that all scoring rules are strictly

proper.

LemMa 2, Assume that all scoring rules satisfy
Assumption 1. A coherent, set of forecasts is strongly
Bayes. If all of the scoring rules are strictly proper, every
collection of weakly Bayes forecasts is coherent,.

Table 1 Summaty of Assumptions and Conclusions of Results
Providing Dominating or Equivalent Farecasts

Examples to

Conclusicns justify assumptions

Assumptions

A possibly randemized All scoring rules satisfy  Example 5 and Lerama 3 -
forecast weakly Assumptions 1 and 3,
dominates and all merely proper
scoring rules satisfy
Assumption 2

A possibly randemized  All scoring rules satisfy Example 6
forecast strictly Assumptions 1-3
dominates
A coherent; forscast — All scoring rules are Example 8
strictly dominates continuous and
satisfy Assumptions 1
and 3
A coherent, forecast Al scoring rules are Exampie 9
with the same total conéinuous and '
scores satisfy Assumption 1

Motes, The first three results comprise Theorem 2 and assume that a coi-
lection of farecasts is given that is not weakly Bayes. The fousth resuit is
Theorem 3 and assumes that a collection of weakly Bayes forecasts is given.

3.3. Weak and Strict Dominance in General
Theorem 2 is our general result containing conditions
for the existence of dominating forecasts of various
sorts when the initial forecasts are not weakly Bayes.
Theorein 3 gives conditions for the existence of a set
of coherent, forecasts with the same total scores when
the initial set of forecasts is weakly Bayes. The various
conclusions of these theorems are listed below:

Conclusion 1. There exists a finite subcollection
{(Ay, By), ..., (A,, B,)) € € whose forecasts P(A, | B},
..., P(A, | B,) are not weakly Bayes, and for every
such subcollection there exists a possibly randomized
forecast that weakly dominates P(A, | B)), ..., P(A, | B,).

Conclusion 2. There exists a finite subcollection
{(Ay, By), ..., (A,, B,)] €€ whoseforecasts P(A, | B),
..., P(A, | B)) are not weakly Bayes, and for
every such subcollection there exists a possibly ran-
domized forecast that sirictly dominates P(A, | B)),
....,P{A,|B,).

Conclusion 3. There exists a finite subcollection
{{Ay, B, ..., (A, B,)} € %€ whose forecasts P(A, | By),
..., P{A, { B,) are not weakly Bayes, and for every
such subcollection there exists a coherent forecast that
strictly dominates P(A, | By), ..., P(A, | B,).

Conclusion 4. There exists a coherent collection
of forecasts that has the swme tofal scores as
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{P(A | B): (A, B) € 6} for every finite subcollection
{(Ail Bl)r Tl (Anr Bn)} - .

TaEOREM 2. ‘Suppose that an agent miist provide a con-
ditional forecast for each pair of events in the collection
G. Suppose that the agent chooses forecasts that are not
weakly Bayes in the sense of Definition 10. Assume that
all of the proper scoring rules (mentioned in Definition 10)
satisfy Assumptions 1 and 3, and that all of the merely
proper scoring rules satisfy Assumption 2. Then, Conclu-
sion 1 holds. If, in addition, Assumption 2 holds for every
scoring rule, then Conclusion 2 holds. If, in addition, all of
the scoring rules are continuous, then Conclusion 3 holds.

TuroreM 3. Suppose that an agent must provide a con-
ditional forecast for each pair of events in the collection €.
Suppose that the agent chooses forecasts that are weakly
Bayes in the sense of Definition 10. Assume that all of
the proper scoring rules (mentioned in Definilion 10} are
continuous and satisfy Assumptions 1 and 3. Then, Con-
clusion 4 holds.

The proofs of Theorems 2 and 3 appear in the
appendix.

4. Examples

In this section, we provide results and examples to
illustrate why we make each of the assumptions in
our various theorems. The examples involve only
marginal forecasts. None of the assumptions that we
make is needed solely because we allow both condi-
tional and marginal forecasts. That is, even if we were
to restrict attention solely to marginal forecasts, as
Predd et al. (2009} did, our proofs would still use all of
the assumptions to deal with the examples in this sec-
tion. To simplify notation, we do not write all of these
marginal forecasts as conditional on (). [nstead, we
leave off the “|Q” from each forecast in these exam-
ples. Similarly, the scoring rule for scoring the fore-
cast of each event A is denoted (g 4, &3, 4) instead of
(0,4,0+ 83, 4,0)- And the collections of pairs of events
are written as collections of individual events because
the second coordinate of each pair is implicitly Q.

4.1. Assumption1
If scoring rules are allowed to be unbounded both
above and below, one runs the risk of encountering

o0 — o0 in even the most elementary calculations, such
as total scores. The possibility of co — oo also makes
the definition of Bayes’ rule problematic.

‘Example 5 illustrates that incoherent, forecasts may
not be even weakly dominated without Assump-
tion 1. It also shows how a finite collection of forecasts
can be weakly Bayes without being strongly Bayes.

FExaMPLE 5. Let € = [A,, A;} where A; C A,. Sup-
pose also that none of C; = Ay, ;=40 AY, and
C,= A§ is empty. The constituents are then €, G,
and G, Let

(Lo, 4 (%), &1, 4 (x) = (7, (1~ x)z) and
(%0, 4,(X), 81, 4,(x)) = (log(x), log(x) +1/x).

The first is the Brier score, whereas the second
is peculiar. To see that the second scoring rule is
strictly proper, note that the expected score (when
Pr(A;)=p)is

(0~ pogta) +p[ o0+ | =logo + 2. )

The expression in (11) is smooth as a function of x for
x > 0, and its derivative with respect to x is 1/x —p/2%.
For p > 0, the derivative equals 0 if and only if x=p.
Also, the second derivative is —1/x*-+2p /x?, which is
positive at x =p, so x = p provides the unique min-
imum. For p =0, the expression in (11} is also mini-
mized uniquely at x =0.

Now, suppose that an incoherent, agent assigns
P(A}) =1 and P(A,) =0. The total scores are iy =0,
d, = oo, and d; = —oo. No forecast can do better
than —oo on the third constituent, so there is no set
of forecasts that strictly dominates these incoherent,
forecasts. The only way to match —oo on the third
constituent is to forecast 0 for A,. (For a randomized
forecast, there must be positive probability of fore-
casting 0 for A,.) No matter what one then forecasts
for A,, the total scores are now the same as those
of the incoherent, forecast. So the incoherent; fore-
casts cannot be weakly dominated by another fore-
cast, coherent, or otherwise.

The forecasts in this example are Bayes in prob-
lem % with respect to a prior R if and only if R(G,} =
1. For the subcollection s¢ = {A,}, the forecasts are
Bayes in problem s with respect to R if and only if
R(A,) = 1. No prior gives probability 1 to both A,
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and C; because they are disjoint. Hence, although the
choices P(A;) =1 and P(4,) =0 are weakly Bayes,
they are not strongly Bayes. _

4.2. Assumption 2
This is the assumption that each branch of the scoring
rule is continuous at the point where it achieves its
minimum. Discontinuity at this low end of the scoring
rule can have curious consequences for the existence
of dominating forecasts. Example 6 illustrates why we
distinguish between Conclusions 1 and 2 depending
on whether Assumption 2 holds for all scoring rules.
ExamrLe 6. Let % = (A, A,] with A, = AL
Suppose also that neither A; nor A, is empty.
The constituents are €, = A; and C, = A}, Let
(80,4, (X), 81, 4,(x)) = (x*, (1 — 2)*). The other scoring
rule is g; 4, (x) =x —log(x) and '

¢ if x=0,

Lo, 4, (%) =
oA 1+x ifxr>0.

To see that the second scoring rule is strictly proper,
note that the expected score (when Pr{A,) =p) is

(1—p)(1+x)+p[x —log(x)] if x>0,
o if x=0and p=0,
0 fx=0and p=0.

Clearly, x = 0 minimizes this function if and only if
p=0.If p > 0, the function is smooth for x > 0 with
derivative (with respect to x) equal to 1 — p/x and
second derivative p/x*. The derivative equals 0 if and
only if x = p. Also, the second derivative is positive
at x =p, 50 x =p provides the unique minimum.
Now, suppose that an incoherent; agent assigns
P(A,) = 1/2 and P(A,) = 0. The total scores are
dy =1/4 and d, == co. Bvery randomized forecast that
has a score on the first constituent of less than 1/4
must choose a forecast of 0 for A, with probabil-
ity greater than 3/4. Every randomized forecast that
assigns positive probability to a 0 forecast for A, pro-
duces a score on the second constituent of co. So the
incoherent forecasts cannot be sirictly dominated. The
forecasts P'(A;) =1 and P'(A,) = 0 weakly dominate.
Example 7 shows that a collection of forecasts can
be weakly Bayes without being strongly Bayes if some
merely proper scoring rules fail to satisfy Assump-
tion 2, even when all scoring rules satisfy Assump-
tion 1. This is why Lemma 10 and Conclusion 1 in

Theorem 2 assume that merely proper scoring rules
satisfy Assumption 2.

Exampii 7. Let € = [A,, A, A;, ...}, where each
event is nonempty, 4, D A, O -+, and Ay C 4; for
all i > 0. Suppose that an agent gives forecasts such
that 0 < P(A;) < 1 for all i, but for i > 0, P(A,) | 0.

Suppose that (g5 4, £1,4,) 5 the Brier score for all
i=0but

0 j‘fx:(}r
%o, (X} =11/4 f0<x<1/2,
¥t iflj2<x<l,

00 Hax=0,
81, 4,(%) =1 1/4 #f0<x<1/2,
(1-xP? #12=<x<l

To see that this last scoring rule is proper, argue by
cases. If Pr(A,) = 0, then the expected score is 0 if
x =0, and strictly positive otherwise. If 0 < Pr(A,)
<172, then the expected score is oo if x =0, 1/4 #
0 < x <1/2, and strictly greater than 1/4 otherwise.
If 1/2 <« Pr{Ay) =p <1, then the expected score is o
fxr=0,1/41f 0<x=<1/2, and (1—p)x® +p(1 —x)* if
1/2 < x <1. The last quantity is uniquely minimized
at x = p with a value p(1 — p) that is stﬂctiy less
than 1/4.

For every finite subcollection & of € that does not
include Ay, the corresponding forecasts are Bayes in
problem # because they are coherent,. For each finite
subcollection o that includes A4, the correspond-
ing forecasts are still Bayes in problem %, because
the score from P{A;) is identical to the score one
would get by replacing P(Ay) by any number strictly
between 0 and the smallest of the P{A;) for A, € 4.
Hence, the forecasts might as well be coherent, as far
as the scores are concerned. So, the collection of fore-
casts is weakly Bayes.

However, the entire collection of forecasts is not
strongly Bayes. The reason is that every finitely addi-
tive probability R that makes (10) true for all of
the finite subcollections that do not include A, has
R(A;) = 0. But (10) does not hold with R(A,) =0 when
the finite subcollection includes A,.

4.3. Assumption 3
Scoring rules that violate Assumption 3 are patholog-
ical as the following result shows. Lemma 3 charac-
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terizes proper scoring rules that satisfy Assumption 1
but violate Assumption 3.

LEmMA 3. Let g, and g, be functions that are bounded
below. Assume that either go(x) or §;(x) is infinite for at
least one value of x € (0, 1). Then (gy, §1) is a proper scor-
ing rule if and only if the following conditions hold:

o For k=0,1, g,(x) is minimized at x =k.

o For all 0<x <1, max{gy(x), g:{x)} = o0
Such a scoring rule is not strictly proper.

Proos. The expected score for forecasting x when
the probability of the event is p equals

(1 —p)go(x) +pga(x). (12}

It is now clear that the first condition is necessary and
sufficient for (12) to be minimized at x =p ifpel0, 1k
It is also clear that the second condition is sufficient
for (12) to be minimized at x =p forallpe (0,1). To
see that the second condition is necessary, assume that
2q(%p) = oo for some X, € (0,1). (A similar argument
works if g;(x,} = oo for some x; € (0, 1).) The only. way
that (12} can be minimized at x=p when p =1, is for
(12) to be infinite for all 0 < x <1. That is, the seconfi_
condition must hold. Because the expected score 15
minimized at all x when 0 < p < 1, such scoring rules
are not strictly proper. [

Notice that the scoring rules in Lemma 3 all have an
infinite expected score whenever a forecast is strictly
between 0 and 1 and/or the probability of the event
is stricfly between 0 and 1.

4.4. Continuity .
In our decision-theoretic framework, a discontinu-
ous scoring Tule corresponds to a loss function that
will not satisfy the conditions of classical minimax
and complete class theorems. (See §§324 and 3.2.5
of Schervish (1995) for more details.) In particular,
when such loss functions are used, there may be
dominated forecasts such that the only forecasts that
dominate them are themselves dominated. Exam-
.ple 8 illustrates why we cannot expect a dominat%ng
coherent, set of forecasts with discontinuous scoring
" rules even though there are other incoherent; domi-
nating forecasts. : .
Exampi 8. Consider the scoring rule used in
Example 3. If p € {0, 1}, the expected score is clearly

minimized uniquely by férecasting x=p. Uf0<p<]
the expected score from forecasting x is

;9{1/24—(1ﬁx)z}+(1——p)x2 ifx<1/2,
p(l—x)+(1—p)(1/2+2%) L x>1/2

If p<1/2, the first branch has a unique minimum
at x = p, the second branch is strictly increasing, and
there is a jump up immediately after x =1/2, so the
expected score is minimized uniquely at x =p. (If
p =1/2, the jump is of size 0.) Similarly, if p > 1/2, the
second branch has a unique minimum at x = p, the
fivst branch is strictly decreasing, and there is a jump
down immediately after x =1/2, so the expected score
is minimized uniquely at x = p. Hence, the scoring
rule is strictly proper.

Next, consider a case with n =2, 4 = AS, with
neither event empty. Use the same scoring rule for
both events. There are two constituents, C; = A, and
C, = AC. Let the incoherent, forecasts be p, = 0.6 and
p, = 0.7. Then, d; =115 and d, = 0.95. A forecast
(r,, 1) is coherent; if and only if n, + 1, = 1. For
each coherent, forecast with r, <1/2, the score on )
is 14 (1 —7,)2 + r2, which is always strictly greater
‘than 1.5. For each coherent, forecast with r > 1/2,
the score on C, is 1+ 12+ (1 —n,)?, which is always
strictly greater than 1.5. For the coherent, forecast
#, =1, =0.5, the scores on both G and C, are equal
to 1.0. Hence, no coherent, forecast can weakly domi-
nate the incoherent, forecast p; =0.6 and p, =0.7. On
the other hand, there are other incoherent; forecasts
that dominate {p;,p,). For example, pj = 0.55 and
1, = 0.65 have total scores of d; =1.125 and d; = 0.925,
respectively. - _

When a scoring rule is merely proper, 1t 18 possi-
ble for incoherent, forecasts to be Bayes. If the proba-
bility with respect to which incoherent, forecasts are
Bayes happens to assign probability 0. to at least one
constituent, then there may be some strongly Bayes
forecasts that are both coherent, and weakly domi-
nated. (No Bayes forecast can be strictly dominated.)
Example 9 illustrates why Theorem 3 does not deal
with the case in which an incoherent, set of forecasts
is Bayes but the scoring rules are merely proper and

discontinuous.

Exampik 9. Consider the collection € = {4,

Az, Aa} With A3 = (Al U Az)c and A}’ M AZ ?é 8
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The constituents are C, = A, N A,, G, = A, N Af,
C, = A N A,, and C, = A,. The forecasts are
P(A) =P(A) =P(A)=1/2. The scoring rules
(80,4, &1, 4,) for i=1,2 are as follows:

(x) = 0 ifx<1/2,
=N e i x=1/2,
1/2 i x <172,
Xl=
81 [(1—x)=’- ifx>1/2.

To see that this is proper, let 0 <p < 1. The expected
score for forecasting x is

p/2 ifx<1/2,
p(l—x)? 4+ (1 —p)x* ifx>1/2.

This is minimized at x = p for all p. Of course, if
p-<1/2, it is minimized at all x < 1/2 also. The scoring
rule is merely proper. Let {gy 4., £1,4,) be (2%, 281)-
The forecasts are Bayes with respect to every proba-
bility R that satisfies R(C;) =1/2, R(C,) =0, R(Gy) =0,
and R(C,) =1/2. The total scores are 4; =1 for all j.
The alternative forecasts g; = g, = 3 = 0 have total
scores of d; =d, =1 and d, = d; = 1/2, which weakly
dominate the original strongly Bayes forecasts.

4.5, Conclusion 3 :
Example 10 illustrates why Theorem 2 has the weak
Conclusion 3 rather than the stronger claim that
the same set of coherent, forecasts dominates every
incoherent, subcollection.

ExamprE 10. Let % = {4, A,, Ay, Ay, Ag], where
Ay, Ay, Ag form a partition of () into three nonempty
events, A, = A, U A,, and A; = A, U A;. Suppose
that the forecast for each event is scored using the
Brier score. Consider the following incoherent; fore-
casts: P(A;) =1.0, P(A,) =0.3, P(A;) =1.0, P(A) =
0.1, and P(As) = 0.1. The subcollection {A;, A} is
not Bayes. The constituents are C; = A, and C, = A4,
with total scores of d;, =1.81 and d, = 0.01, respec-
tively. Bvery set of forecasts that dominates these
must give a forecast less than 0.1 to A,. The subcollec-
tion {A,, As} is also incoherent,. The constituents now
are B = A, and B}, = A; with total scores of d| =0.01
and d;, = 1.81, respectively. Every set of forecasts that
dominates these must give a forecast less than 0.1 to
As. If a single set of forecasts was to dominate both

of the two finite subcollections above, it would have
to give forecasts less than 0.1 to each of A, and As.
But A, U Ag = £}, and hence no coherent; set of fore-
casts can dominate both of the incoherent, subcollec-
tions above.

5. Discussion
We have given sufficient conditions for a set of
incoherent, (Definition 1) forecasts to be weakly or
strictly dominated {according to proper scoring rules)
by either a coherent; set of forecasts or by something
else. Our conditions are not necessary. On the other
hand, for each of our conditions, we have provided
a counterexample to show that the condition cannot
be eliminated without replacing it by some other con-
dition that would rule out the counterexample. For
instance, the condition in Theorem 2 that all of the
merely proper scoring rules satisfy Assumption 2 is
stronger than needed. With some extra work, one
could prove that the only merely proper scoring rules
that need to satisfy Assumption 2 are the ones that
are flat either on the interval (0, €) or on the interval
{1 —¢,1) for some € > 0. (See Example 7 to see what
can go wrong if Assumption 2 fails for such a scoring
rule.) The basic idea is that so long as the set D in (18)
does not contain a sequence of points {(e; ,, e, )7,
with lim, (e, ,+e; .} >0and e, ,/(e; , +e, ,) arbitrar-
ily close to one of the endpoints, the function [;(r)
defined in the proof of Lemma 10 will be continu-
ous at all v that matter. As another instance where
our conditions are not necessary, the reader will note
that our theorems do not make any assumptions on
the types of events being forecast, or on the particu-
lar not-weakly-Bayes forecasts (aside from them not
being weakly Bayes). Hence, we find that, in the proof
of Lemma 13, we obtain the strongest Conclusion 3
without assuming continuity of scoring rules so long
as the original forecasts have an infinite score in every
constituent. Similarly, in Lemma 12, we obtain Con-
clusion 2 without assuming that any of our scoring
rules satisfy Assumption 2. It is only in Lemma 14 that
we make use of which scoring rules satisfy Assump-
tion 2. But the distinction among these three lem-
mas is based on the forecasts, and we wanted the
conclusions to Theorem 2 to hold for all forecasts
simultaneously.
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One somewhat surprising result that we found is the
distinction between the conditions under which Con-
dusions 1 and 2 hold. Whether or not we can guar-
antee weak dominance does not depend on whether
or not we are using merely proper scoring rules, but
rather on a continuity property of the strictly proper
scoring rules (Assumption 2). Predd et al. (2009)
claimed that if one uses continuous merely proper
scoring rules, one can guarantee a weakly dominating
coherent, set of forecasts. Our results show that one
gets either a strictly dominating coherent; set of fore-
casts (via the third part of Theorem 2} or a coherent,
set of forecasts with identical scores (via Theorem 3}
There is no middle ground in which one achieves
weakly dominating but not identical scores.

Despite not having a complete characterization of .
all cases in which each of the four conclusions holds,
we believe that we have delineated the cases very
thoroughly. Our theorems apply regardless of which
events are being forecast, regardless of what forecasts
are given, and regardless of which proper scoring rule
is used to score each event (so Jong as every scoring
rule satisfies the conditions of the relevant theorem).

Our main results are formulated for forecasting
events, where events are identified with their indica-
tor functions. However, we noted in the introduction
that de Pinetti (1974) used the Brier score to establish
the equivalence between coherence, and coherence,
of a set of forecasts over the class of bounded vari-
ables, measurable with respect to some common mea-

surable space. Our Theorems 6 and 7, on which the
proof of our main result relies, apply to bounded ran-

dom variables and general loss functions, not merely

indicators for events. Thus, we have reason to explore
generalizations of our principal results for forecast-
ing bounded variables with proper scoring rules. The
first thing that we would need is a general definition
of a proper scoring rule for bounded random vari-
ables. If we are interested only in scoring forecasts,
suppose that X is a bounded random variable and x is
a forecast. The score could be some function g(X, x).
We could call g proper if, for every bounded ran-
dom variable X, E[g(X, x)] is minimized by x = P(X).
Some guidance in this direction is provided by Savage
(1971). We conjecture that a collection of forecasts for
bounded random variables is coherent; if and only

if it is impossible to find an alternative collection of
forecasts that lead to a uniformly smaller total score.
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Appendix. Proofs of Results

Some General Results About Scoring Rules

Some of our results rely on an understanding of the struc-
ture of general scoring rules. We make use of the following
two results from Schervish (1989).

TuroREM 4 {ScaERvISH 1989, THEOREM 4.2). Let (g0, 1)
be a left-continuious scoring rule that satisfies Assumptions 1-3
such that g,(x) does not jump to oo at X =0. The scoring rule is
proper if and only if there exists 4 o-finite mensure A on [0, 1}
sucht that for all x, :

s@=[  0-gAn) ol g)=f axd@- 03

The scoring rule is strictly proper 1f and only if, in addition,
X\ gives positive measure to every nondegenerate interval.

LemMa 4 (ScHprvisH 1989, LEMMA AD). Let {go. 1) bea
proper scoring rule. Let 0<p <1, and consider m,(x) = pg1(X)+
(1 — p)go(x) as a function of x for fixed p. If & and g, are
bounded in d neighborhood of p, then m, is contirous af x =p.

We also need a few additional general results about scor-
ing rules,

Lemma 5. Suppose that a left-contimious merely proper scor-
ing rule (o, §1) satisfies Assumptions 1-3. Let 0 <p <1, and
suppose that x =p #p also minimizes (1 — p)go(*) + pgalx).
Then, both g, and g, are constant on the open interval from
p top'. If gy and gy are continuous, then they are constant on
the closed interval from p to p'.

Proor. Assume that p’ > p. The other case is similar. By
(13), we have

g () + (1 — P)go@) — [P81(p) + (1= P& (P
=[ @99 (14)
51"

Because ¢ —q > 0 for g e (p. 1), the fact that the left-hand
side of (14) equals 0 implies that AM{p,p')) = 0. Trom the
representation in Theorem 4, we see that both g, and g, are
constant on each interval to which A assigns 0 mass. In the
continuous case, all such intervals are closed. O

LemMa 6. Let (o, 1) be a (strictly) proper scoring rule
that satisfies Assumption 3. For each 0 < ¥ < 1, define
Ry (x) = Ly &5 (1)- Then (hy, hy) is (strictly) proper.
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Proor. Let m,(x) be as in Lemma 4, and define
lp(x-):phl(x)rl-(i —hy(x). If there were an x € (0,1) at
which one of g, or g; were discontinuous but not the other,
then m, would be discontinuous at x, which contradicts
Lemma 4. It follows that gy and g, are discontinuous at the
same ‘set of points in (0, 1). From the definition of (hy, k)
we gee that all four functions gy, g1, #, and k, share the
same set of discontinuities. Let 0 < p < 1 be a discontinuity
point of (g, g) (if any). Then, by Lemma 4,

phy(p} + (1 —pliy(p) = Plg?‘gl(x) +(1 *P)H?lgo(x)
E xtp
= 13—‘%}{73’31(9() + (1 —p)ga(x)

= p2(p) + (1 —piga(p.

Hence, I,(p) =m,(p) for all 0 <p < 1. For p ¢ {0, 1}, we also
Illave 1,(p) = m,{p), because g; = h; at both endpoints for
i=0,1 For x#p and x € {0, 1}, we have

pha(p)+ (1 —p)hy{p) = pg:(P) + (L —p)go(p)
2 p+(1-plgex). . (15

For x #p and 0 <x < 1, we have
phi(p) + (1= plho(p) < limipg, () + (1~ p)ge(y)]

= ph{x) + (1 = p)hg(x). (16)

Together, (15) and (16) imply that {hy, /) is proper. If
(g0, g1) is strictly proper, then the inequality is strict in
§15). Assume by way of contradiction that the inequality
is equality in (16). Apply Lemma 5 to {k, /) to conclude
that hy and hy are both flat on the open interval between
p and x. Theorem 4 implies that &, and k, are monotone, so
they have at most countably many discontinuities. Hence
gp and g; have at most countably many discontinuities, and’
% .and & are also both flat on the interval between p and x.
This contradicts the fact that (g, 2,) is strictly proper. O

Lemma 7 extends one direction of Theorem 4 to general
scoring rules.

LBMM-A 7. Let (gy, 1) be a proper scoring rule that satisfies
Assumptions 1-3, Then there exists a o-finite measure A on [0, 1)
stich that for all continuity points x € (0, 1)

aW=[  Q-OMdg) ad g@=[ oA

Proor. Let (g,, g1) be a proper scoring rule, and create
tl}e left-continuous proper scoring rule (g, /1) in Lemma 6.
First, assume that g (x} does not jump to oo at x =0. Note
that g;{x) = #,{x) for all continuity points x and i =0, 1. The
cgndusion now follows from Theorem 4 applied to {f, it;).
Finally, if g;{x) jumps to oo at x =0, let I (0) =Tim, o 8{x)
and let hj(x) = h;(x) for all other 7 and x. If we can show
that {/, I}} is proper, the above reasoning will finish the
proof. The only way that (/1j, #}) could fail to be proper is

if there exists p > 0 such that ph’ (0)+ (1 — iy (0) < ph;

(1.- p)h{] {p). But both hj and h;lare con!:hfizo?l(s Lt {i ﬁ(gfl)cj,
this inequality would imply that ph(x) + (1 — p)hy(x) <
ph{p) + (1 — p)hy(p) for some 0 < x < p, which contradicts
{fy, ) being proper. O

]l_.E.l\fIMA 8. Su;?pose that (8o, g1) s a proper scoring rule that
;ﬂhamsﬁes Assumptions 1-3. Define m(p) = (1 — p)go(p) + peq (p).
ett,

i _ _
pg%m(r') }grllm(rf) =0.

‘ P.ROOF. We prove the limit at 0, because the limit at 1 is
similar. Because gy(p) goes to 0, we need only prove that
pe{r) goes to 0. Suppose, to the contrary, that it does not
go to 0. For 0 <p <1, mip) is the pointwise minimum of a
coliection of linear functions, and hence is concave and con-
tinuous on the open interval. It follows that lim ~oP5p)
e‘xists. Let the limit be ¢ > 0, From Lemma 7, for e};ery con-
tinuity point p of g, and every continuity point t € (p, 1),

g () =p fw) (1~ q)A(dg) -+ pgy (D).

Hence, for every confinuity point ¢t e (0,1),
hmp._,op-f(p' n (1 — g)Aldg) = ¢. Let {p,]i2, be a sequence of
continuity points of g, that converges to 0. In the integral
aboye, 1 —g>1- 1 for all g € (p,t); hence, for every
continuity point € (0, 1), p,A((p,. 1)) eventually gets larger
than ¢/2. Let £ > 0 be a continuity point small enough so

t%zat go(t) < ¢/3. It follows from Lemma 7 that, for all but
finitely many n,

Cegz [ aMaD) zpAp D) =
3 [H = s ) 4} Z Py Pu+ ))>£1

i

a contradiction. 0O

Equivalence of Definitions of Coherence
In Ii)his section, we prove Lemmas 1 and 2.
®oOF OF LEMMa 1. Let o ={(A,,By),...,(A,B

a finite subcollection, and let p;,{.(. . :pn 11)38 me(cgn££2£§
forecasts. The left-hand side of (9} and the left-hand side of
{10) are the expected total score under the probability R. If
the forecasts in this subcollection were strictly dominated
then the dominating forecasts would have a strictly smaﬂer’
score for every w. Because there are only finitely many dif-
ferent total scores, the expected total score would be strictly
smaller for every finitely additive probability; hence, the
dominated forecasts could not satisfy {8) and they could not
satisfy (10}, and hence they would not be weakly Bayes. [

The proof of Lemna 2 is broken into a series of interme-
diate results.

. Lemma 9 Suppose that (10} holds and that the vight-hand
side of (10} is finite. Then, for each i==1,...,n,

R(A;N Bi)gl,Ai,B,- (8) +R(Aic NB;)go, A, B;(S)
=R{A;: N B;)g1, 4, 5, (R(A; | B)))
+R(AF NBy)go, a5, (R(A; | B)). (17)

o
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. Proor. If R(B;) =0, the result is trivial, so assume that
R(B,) > 0. Because the scoring rule is proper, we know that
for each i

R(A; | B8, a5 () L — R{A; | B)1go, A, 5 (8)
> R(A; | B)gy, a5, (R(A: | B))
+[1—R(A; | B)]go, a; (R(A; 1 BD))-

If the inequality above were strict for some i with R(B;) = 0,
then the left-hand side of (10) would be strictly larger than
the right-hand side of (10). O

Levma 10. Assume that all scoring rules satisfy Assump-
tion 1 and that all merely proper scoring rules safisfy Assump-
tions 2 and 3. If a collection of forecasts is wenkly Bayes, then it
is strongly Bayes.

Proo¥, For every finite subcollection of €, there exists
a finitely additive probability R such that (10) holds, We
show that there is an R that works for all finite subsets.
Let sf={{A;, B}, ... (A, B,)} be an arbitrary finite sub-
collection of €. Let @, = [R: (10) holds}. We would like
to show first that P, is closed in the topology of point-
wise convergence, which is also the product topology on
the function space % =10, 1%, which includes all finitely
additive probabilities on Q. All strictly proper scoring rules
satisfy Assumption 3. Assumptions 1 and 3 guarantee that
the right-hand side of (10) is always finite. Lemma 9 then
says that for each Re Py and each i, (17) holds. Hence,
Py =iy Pyay gy Next, we write each %4, py a8 the
inverse image of a closed set under a continuous func-
tion. For each A e 2%, the coordinate projection function
far @~ 10,1], defined by Fa(R) = R(A), is continuous. For
each i, define the function )

Li{ey )
el el .
e . e . lf [ +e >01
= 181, 4:., (31+32) ng'A"B'(31+32) B
0 otherwise,

for 0 < e, ¢; = 1. We can write
Piiaz o = S, fAEnB;)_l(Di)’
where

Di = {(31, 62): elg],A‘-, B; (5) +32g{]’A,-,Bf(6)
=l(e,, £5), and e +e; <1} (18)

" If D, is closed, then s0 is P4, py)- The argument that D
is closed differs depending on whether or not the scoring
rule (o, a,, ;- 81, 4;.5,) 18 strictly proper. If the scoring tule
is strictly proper, then the ith coordinate of the randon-
ized forecast 8 must be nonrandomized because only non-
randomized rules can be weakly Bayes with strictly proper
scoring rules. Let & assign probability 1 to the ith coordinate

being p. In this case, D; = {(e;, e,): (1 —p) = e;p}, which is
a closed set.

1f the scoring rule is merely proper, we argue as follows.
Because D, is a subset of R?, it is closed if it contains the
limit of every convergent sequence. Let {(64, s €2, )} DO
a convergent sequence in ;. Let the limit be (ey g, €2,0)-
We need to consider two cases. First, if e o +¢5,0 =0, then
(€10 2,0 ED trivially. For the rest of this part of the proof,
assume that e, o + €, o > 0. Define hie,, e,) = e /{er + e2),
and let r, = (e, ,, € ,) for n=01,.... Then h is con-
tinuous at (e, g, ,0) and 7, converges to 5. We can write
Lie;, ex) = (&1 + ex)li (hlen, e,})), where [(r) = gy a5 (1) +
{1 — )80, 4,5 Ta =T for all 5, and {¢y ¢, €,0) € D
Lemma 8 establishes that each I is continuous on the closed
interval {0, 1]. So, [; is continuous at (e1,0. €,¢), which is
then in D;. Hence, D; is closed and 50 is Fya;, - It follows
that each @, is closed.

Finally, we show that the intersection of all &, is
nonempty. It is easy to see that if B is a finite subcollection
such that @ C o, then &, C %y, It follows that the collec-
tion of all &, has the finite intersection property. Because
the set of finitely additive probabilities is compact in the
product topology, it follows that the intersection of all &y
is nonempty. That s, there is at least one finitely additive
probability R such that (10) holds for all finite subcollec-
tions. Hence, the forecasts are strongly Bayes. [

The connection between coherent, forecasts and strongly
Bayes forecasts needed for Lemma 2 relies on the ability
1o extend a collection of coherent; forecasts into a linear
functional on a linear space. The next two theorems extend
de Finetti’s (1974, §3.10) fundamental theorem of probabil-
ity to deal explicitly with conditional forecasts. The funda-
menta) theorem of probability applies to more generalk ran-
dom variables than indicators of events. In keeping with
de Finetti’s (1974) original presentation, we state and prove
the next two results and their corollary for bounded random
variables rather than merely for indicators of events. In this
paper, we use the results only for indicators of events. The
word prevision in the statements and proofs of these results
can be understood as “elicited expected value” in the same
way that forecast stands for elicited probability.

TrroreM 5 (FUNDAMENTAL THEOREM OF Prevision}. Let
% be a sek of pairs where the first element of each pair is a bounded
random variable and the second is a nonempty event. For each
(X,B)e%, let P(X|B)bea conditional prevision. Assume that
the conditional previsions are coherertty. Let (X, Q) ¢ 6. Then
there exists u closed interval [, d} such that P(X | Q)==x is
coherent, with all the other conditional previsions if and only if
c<x=<d

Proor. Define the linear space
¥ = |ty 5~ POG B + £ X B 6 and
i=1

a;eRfori=1,....n andfeR}. (19)
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For each Y € % expressed as in (19), let L(Y) = f. The
cob'erence1 of the previsions makes it clear that L is well
defined. {If the same Y could be expressed two different
ways with different values of f, then book could be made
by trading the two different representations of ¥ against

eacb other.) It is also easy to see that L is a linear functional
defined on %. Define the following two sets

P={Ye¥y Y<X},

P={Ye¥: Y=Xl

-S_et ¢ =supy.pL(Y) and d = infy 5 L(Y). For the “if” direc-
tion, SuRpose that ¢ <x < d. Suppose, to the contrary, that
there exist (X, B),...,(X,, B,) in %€ and real numbers
Cy,en., o, and B0 and € > 0 such that

B0+ Yo dy X, ~P(X | B)] < —e.  (20)

i=1

If B =0, then (20) implies

e Xa
Xoex— - VPRI -PIBL @
i=

The right side of (21) is an element of P, and hence
d <x—e¢/f, which contradicts x < 4. Similarly, if 8 <0
er ax:rive at a contradiction to ¢ < ¥, For the “only if’:
direction, suppose that P(X | ) = x is coherent; with the
other Erevisions. Suppose, to the contrary, that x < c. Let
Y3 oy [X; — P(X; | B)]+ f € Pbesuch that Y < X and
f > {c+x)/2. The following gambles make bookAaga:inst
these previsions:

X—C

~(X -+ (Y- fl=x-f=<

< 0.

Similarly, if x > &, we can find a Y € P that all
R e at allows us to

TuROREM 6 (FUNDAMENTAL THEOREM OF CONDITIONAL
PR'EYISION). Let € be a set of pairs where the first element of ench
pairis a bounded random varighle and the second is a nonempty
e?ent. For each (X, B) € B, let P(X | B) be a conditional previ-
sion. Assume that the conditional previsions are coherent. Let
(X, D) ¢ € with D # @, Then there exists a set E of real numbers
suchlt@at P(X | D) = x is coherent, with all the other conditional
previsions if and only if x € E.

PR-OOF. First, suppose that both (D, ) and (XI, Q)
are in €. De Finetti (1974) proves that a neces;ary
fand sufficient condition for P(X | D) to be coherent
is PXL1Q)=PX|{DyPD|). If PD| Q) > 0, theri
E=[PXI, | )/P(D|W). If P(D| Q) =0, then E=R. Next
suppose that (D, () € € but (XI,,, 1) ¢ 6. If P(D| Q) = OI
-then E=R If P(D{Q)+#0, apply Theorem 5 to find ar{
interval [c, d] of possible coherent, values for P(XI, | Q).
Then E = {x/P(D | 0): ¢ = x < d}. Next, assume that (D, Q) ¢
% but (XI, Q) € €. Apply Theorem 5 to find an interval

[c, d] of possible coherent; values for P(D| Q). If ¢ =0, then
E=R If c> 0, then E={P(XI; | V)/x: ¢ <x < d}. Finally,
assume that neither (D, () nor (XI,, ©) is in €. Apply The:
orem 5 to find an interval [c;, 44} of possible coherent; val-
ues of P(D | ). For each x € [¢, 4,], apply the argument
a.bo_ve for the case in which (D, {}) € € but (XI,, ) &€ to
find a set E, of possible coherent; values of P(X | D). Then
E= Uxe[q,d,]Ex' u

COROLLTARY 3. Let &y and 8, be two disjoint sets of pairs
where the first element of each pair is a bounded random variable
and the second is a nonempty event. For each (X, B) € %, let
P(X .I B) be a conditional prevision, Assume that the conditi't’)nal
previsions are coherenty. For each (X, B) € 6,, there exists a con-
ditional prevision P(X | B) such that {P{X | B): (X, B) € €, UG, }
are coherent,. 1 T

Proor. Use Zermelo's lemima to well order the elements
of G,. Let D be the corresponding set of ordinals. We nse
Hmf@te induction to finish the proof. For each succes-
sor c?rf:hnal a € D, apply Theorem 6 to find a conditional
prevision P(X, | B,) that is coherent; with all carlier previ-
310115.. Fo:r each limit ordinal g € D, it is easy to see that the
previsions (P(X, [ B,): a < B} U{P(X | B): (X,B) %) are
coherent; because every finite subcollection was verified as
coherent; at an earlier stage in the induction, [

. Lemma 11. Let ‘€ be a collection of pairs of events. A collec-
fmn of conditional forecasts {P(A | B): (A, B) € €] is coherent
if and only if there exists a finitely additive probability R 011
(©, 2 that agrees with P on € in the following sense: For each
(A, Bye8, R(BYP(A|B)=R{ANB).

.PROOF. For the "if” part, assume that such an R
exists. Let :

sl= {(Alf Bl)f s (An-' Bn)] EC@

b.e a finite subcollection. It is trivial to extend R to a positive
]merflr f.unctlonal L on the linear span % of constants and
the indicators Iy pp, and Ip, fori=1,...,n by

" n " n
L(C +3 o aidp om0 biIB,-) =c+) mR(A;NB) + 3 bR(B).

=1 i=1 =1 i=1

Suppose, to the contrary, that there exist o,

..., @, an
0 such that pande=

X=3 ol [I,, —P(A; | B)] < —e. (22)

i=1

Npte that X in (22} is an element of Z. Because R agrees
with the conditional previsions, X equals

,-2 a;[T4.05, — R(A;NB)] - i: @, P(A; | B[, — R(B)L  (23)

i=1

It follows from (23) that L{X) =0, but (22) implies that
L{X) < —¢, a contradiction. Hence, no book can be made
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and the conditional previsions are coherent,. For the
“only if” part, assume that the conditional previsions are
coherent,. Fxtend the collection of conditional previsions to
include all pairs (B, () and (ANB, Q) for cach (A, Bye€
using Corollary 3. Let <¢' be the linear span of all constants
and indicators I,z and Ip for (A, B)e %. On &, define

] n n
L (c + 3 alang Zb,»l,;i) =c+ Y aP(A;NB; | €2)

i=1 i=1 - i=1

n
£ bP(B;] ).
i=1

Note that L' satisfies I'(X) = x|, and L'(1)=1. According
to the Hahn-Banach theorem, I/ can be extended to a in-
car functional on the linear span of all indicators of subsets
of Q. This extension, when restricted to the indicators of
events, is a finitely additive probability R that agrees with
Pon® O

Proor or Lemma 2. Let {P(A | B): (A,B)e %) be a col-
lection of conditional forecasts. To prove the first claim,
assume that the forecasts are coherent;. Let R be as in
Lemma 11. To prove the second claim, assume that all
of the scoring rules are strictly proper and that the fore-
casts are weakly Bayes. Because all strictly proper scof-
ing rules satisfy Assumption 3, the forecasts are strongly
Bayes by Lemma 10. Let R be as in Definition 10, and
let {(Aq, By)s oo (Ans B,)} € %6 be a finite subcollection. The
right-hand side of (10) is always finite. Lemma 9 says that
(17} holds for all i=1,...,n Because the scoring rules
are strictly proper, P{A; | B} = R(4A; | By) for all i such
that R(B,) > 0. Because this is true for every finite sub-
set, R agrees with P on all of . Lemma 11 completes the
proof. H.

Theorem 3

Proor oF THEOREM 3. We have enough assumptions to
apply Lemma 10 so that the forecasts are strongly Bayes. Let
R be as in Definition 10. Let (A By, -0 (Aus B,)) €% be
a finite subcollection. We can also apply Lemma 9. For each
i such that P(A; | B) # R{4; | B) (if there ave any), apply
Lemma 5 to (ga, 4, &, 4) 10 conclude that g 4, (P{A)) =
i, A; (R(A)) for k=0, 1. For all i such that P(A;) = R{A) (if
there are any), we already have g, 4 PLAD) = &k, 4, (R(AD
for k =0, 1. Because the finite subcollection was arbitrary,
Conclusion 4 now follows. [

Theorem 2 and Its Corollaries

The proof of Theorem 2 relies on a general result from deci-

sion theory, a strengthening of the standard minimax theo-

rem based on a construction of Pearce (1984).
Depinrrion 11 (Lower BOUNDARY). Let Q=10 ..., Ot

be & finite parameter space and let ® be an action space.

The Risk set is

R={(R(Cy, 8), .., R(Cps, §:disa randomized rule}.

Decision Analysis 6(4), pp- 202-221, ©2009 TNEORMS

The lower boyndary of the risk set is

8, = {{xr, .- Xyl € Riy; < foralli and y; < ¥;
for some i implies Yy, - Yu) ¢R}.

The risk set is closed from below if &, S R.

Taporem 7. Let @=1{8;, ..., 0,) bea finite parameter space.
Let s be an action space. Let L: @ »x s — R be a loss function that
/s bounded below. Let ag € st be an action that is not Bayes for
even a single prior distribution and such that L(8;, ap) < o for
all j. Then, there exists a randomized rule that strictly dominates
ag. If the visk set for the decision problem is closed from below,
then there is a dominating rule that is a Bayes rule with respect
tC some prior.

Proo¥. Replace L by L'(8;,a) = L(8;, a) — L(t;, a9). Then
1/ is still bounded below, and the risk set is closed from
below if and only if the original risk set was closed from
below. The risk function of a randomized rule 8 is

R(Bj,ﬁ)zLL'(Gj,a)ﬁ(da).

The Bayes risk of 8 with respect to a prior s = (8,..-/54) 18
i
r(s, 8) = 3. s]-R(Bj, 8).
=1

The minimax theorem (for example, Schervish 1995, Theo-
rem 3.77) says that the decision problem has a least favor-
able distribution v =(ity, ..+, ) and a minimax value

ilgf sup R(6;, 8= inﬁ_f r{u, 8).
i

By construction, the nonrandomized rule a, is an equalizer
with L'(8;, a9) =0 for each j. Because a, isnot a Bayes rule
with respect to the least favorable distribution, its expected
loss (namely 0) is strictly greater than the minimax value.
Hence, there exists a rule & such that R{(8;, 8) <0 for all j,
and so

L L(0;, 2)8 (da) < L(8;,8,) for all j.

This completes the proof of the first claim.

If the risk set is closed from below, it follows from Theo-
rem 3.77 of Schervish (1995) that there is a minimax rule &
that is also a Bayes rule with respect tou O

The proof of Theorem 2 begins by noting that we have
enough assumptions to apply Lemma 10; hence, there is
a finite subcollection s = {(Ay, B}, s (A, B,)} such that
(10) fails for every finitely additive probability R. It follows
that the forecasts p; = P{A; | B)) for i= 1,...,n for the pairs
in s are not weakly Bayes. Let Gy, ..., C, be the distinct
nonempty constituents from Definition 6, and let dy, ..., d,
be the total scores from Definition 7.

The remainder of the proof is split into three cases
depending on whether the set

J={j: d;= o0}

and/or its complement is empty. Together, Lemmas 12, 13,
and 14 establish Theorem 2. ’
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LemmA 12, Under the condition ]
_ s of Theor =
conclusions to Theorem 2 hold. J Theorem 2,4 1= 2, the

APROOF. For each finite collection s = {{4,,B),.
(An, By)} whose forecasts are not weakly Bayes, corls’tn;c’t

problem o as i initi :
Fanction) i in Definition 9. The loss function {and risk

"
LG, gy = le bf(j)gn;(j),A,-(qi)'
i .
The action p=(p,...,p,) €@ is not Ba

rem 7‘ fo achi‘elve Conclusion 2, which imp%ii:s; é&%}iﬁi?
thIf, in ad‘dmon, all of the scoring rules are conﬁnuous-
en the risk set is closed from below. Apply the la{
part of Theorem 7 to obtain a dominating ruleyﬁ that ;
also a Bayes. rule with respect to a prior u == (u ; u l)S
Becauge u is a probability vector, it corresporic’i:'s‘ 't:) gn

essenha]ly'unjque set of forecasts {r,...,7,), where r; i
the conditional probability of A; given B, nirl1ferred fri)rrsl
the proi;abiiit.ies of the constituents. Speciﬁ::ally let R(A; N

B) = X2, ay(j)b(j)u; and R(AS 1B = 20,1 — )by ()
i i §

so that R(B;) = L1, b;(f)u; and =
R(ANB)
= W—R(Bi) if R(B;} >0,

arbitrary  if R(B;}=0.
The Bayes risk of 8; is

m

H‘;fgbf(j)ufj(;Egﬂj(f),A,‘,B;(qi)a (dq)

= ifgff@ ‘2::«; R(B)[rigr, a,8,(9) + (L =780, 4,5, (418 (dq).

Hach summand inside the integral can be minimized sepa-
rately by 4 = 1i; Hence, 8, has the same Bayes risk as 1’fhe
F!_onrandommed rule r=(ry, ..., 7,). S0, we assume that §

is tl"le nonrandomized rule. The risk function for this do -
nating nonrandomized rule is 37}, b;{f)g (r)<d I;u-
each j. Hence, we have Conclusion é . R 7

Lemma 13, Under the condition :
15 of Th c_
conclusions to Theorem 2 hold. f Theorem 2, if | = @, the

) I[;ROOF. Let ot = {(A, By)), ..., (A,, B,}} be a finite col-
ec_ on whose forecasts are not weakly Bayes. Let
S =0 =8, ;1/m, and define, for i=1,...,n, Q(4;NB) =
22 a(Dl(f)s; and QUAS N B) = X[l — byl so that
Q(B) = T4 bi(s;. Then, S

QANE) :
.| omy HRGZO
arbitrary  if Q(B;) =0

Because q,...,q, correspond to a probability, they are

coherepti Condiﬁ(?nai forecasts and they have finite total
scores in all constituents. Hence, Conclusion 3 holds, which
implies Canclusions 1 and 2. O ’

Lemma 14, Under the condition
. . s of Theorem 2, if neith
nor [€ is empty, the conclusions to Theorem 2 hold. d i

ﬁoil{gﬁzg :fe;regﬁ ={{A;,B)), ... (A, B,)) be a finite collec-
. casts are not weakly Bayes. Because the scor-
ing rules are all finite, except possibly at the endpoints, the
only way to get an infinite score is for one of the event,s A;
Fo gfet an extreme forecast that is not always correct Tha’rc
is, either p; =0 but A; £ @, or p; =1 but A, 2 B,. (Az'nd of
course, the scoring rule corresponding to (zi- B~5 has totb

unbounded at the appropriate endpoint.) De;‘;né )

I'=[i: either (g, 4, 5,(p:) =00 and A, # &)
or (o, 4,5, (P:i} =c0 and A; 2 B;}}.

Because | # @, it follows th ] i
Pecaue ws that I # @. For each i e I¢ (if

(hoz Ay, By h'i,A.-, Bf) = (g(), A Bt 81,;1,.,3,.).

f‘;t)r each i EhI, replace (g, fi b §1,4;,5) by the Brier score
hU’A“B"(x)' 1 () = G, (1= 4. In the remainder of
the Proof, when we wish to refer to scores under the original
1s:cora?{f_jl, rules, we call them the “g-scores.” When we %vish

0 refer ifi i

to el ih ;o”;?;);sie:r’}der the modified scoring rules, we call

Next, we show that the original forecasts p =

are not weakly Bayes under the h-scores. Sﬂppg;lej iﬁ(‘)’fl',lig
conirary, that they are weakly Bayes under the h—sco’res We
have enough assumptions to apply Lemma 10 so that' the
fforecas-ts. are strongly Bayes under the h-scores. Let R be as
in Definition 10, and let r, ; = R(A; N B)), 1y ; = R(AF N B;)
and 7, = ry i /(r i+ fori=1,... n (I rﬁ +7 -!:0 fé)r,'
some i, then r ;/(r ; + 13 ;) should be mterp’rtetec% !as some
arfn‘.cravry number in [0, 1].) Foreach i=1, ..., n, x=p; must
minimize 7, i, 4, (%) + 13, ihg 4, (x). Because the h—séon'n
rulels are strictly proper for i € I, we must have p;, =7 fo%
all i e such that v, ; + 1y ; > 0. Because all of the p-! forli el
are ex‘treme, it follaws that 7, by 4. (p:) + 13, ihg, 4, !-) =0f
each i € [. The expected total h-score for plirs 21'11211}9{ o

21, it a8 05 10, b, a5, (P)

iel€

=) 1,181, 4., 5, P 12,:80, 4,8, (P5)

iel€
= 271,81, 45,5 72,180, 4,5, (), (24)

iclC

?Ihire the last equality follows from the fact that # for
— ’ . . !
i=1,...,mn also minimize the expected g-scores. Because p
is not weakly Bayes under the g-scores, it must be that

2118, 4,5 (P + 72,180, 4,5, (P)

i=1

i
= le 71,181, 4;,8,(%) 12,180, a;, 5, (13)-
i i
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Because the p;=7; for i € I are extreme, they contribute 0 to
the total expected g-score. Hence,

> 11,i8, A B (p:) + 12,180, A B (p:)
ieI<
= 301 8, a8 (1) T T2, i80 AL B (r:)-

iel€ .

This contradicts (24), and hence p is not weakly Bayes under
the Ji-scores. _

Next, apply Lemma 12 t0 find a {possibly randomized)
rale & that dominates p under the h-scores. If 8 is a nonran-
domized rude = (1, -« s reptesent it as a randomized
rule with 8({q}) =1. The total h-scores from 8 and the orig-
inal forecasts are, respectively,

d:,- = Z f@ bi(j)hﬂi{f)rAi:Bi(qi)s (dq) and
i=1

dj = X} B oart, a3, Pi} < 000

where @ is the action space in the proof of Lemma 12,
Let w =mingc (@ - dj), the minimum amount by which &
dominates the original forecasts amongst those constituents
where the original g-scores are finite. Table A1 summarizes
some of what we know about the g-scores of 8 and the
incoherent, forecasts. The reason that E = 0 is that all of the
p; for i € [ are extreme and they contribute either 0 or oo to
each total score, For j€ €, the total score is finite; hence,
all p; for i € must contribute 0 to fhe total score. It fol-
lows fthat F =0 and F =d;. The reason d; = dj is that the
g-scores and h-scores are the same for all i eI, In addi-
tion, we know that D < d}-’, hence [} < oo, Also, H = F-—w.
1¢ we knew that G < w, then we would know that & weakly
dominates the incoherent; forecasts under the g-scores. 1,
in addition, we knew that C < o0, then we would know that
5 strictly dominates the incoherent, forecasts under the g-
scores. Bven if these two facts are not true, we notice that C

Total g-Scores for the Ingoherent, Forecasts and the

Dominating Randomized Rule §

Tahie A.1

jel jelt
Ingoherent forecasts
jed A=co 8= Z'bi Nz ane (o)
1&
jed® E=0 F:d}':d,-

Dominating randemized tule 8
jed 0= [ biNgnas@pion D=2 B0, 000 (€0
iet®

fef

jedt G=X [ blGupan@d @ H=1 [ bt 02 00

iet jel®

Noies, The g-scores are expressed in terms of the A-scores when the two
agree, The total scores are split into the contributions from i €/ and from

ielf.
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and G depend only on the distribution (under 8) of the ith
coordinates of q for i € I°. I we change the joint distribu-
tion of these coordinates without affecting the joint distri-
butions of the other coordinates, none of the other numbers
in Table A.1 is affected. We proceed now to replace 8 by
another randomized rule § to make G < W, and if Assump-
tion 2 holds for all scoring rules, C <o

TFirst, consider the case in which we do not assume that
every scoring rule satisfies Assumption 2. Define 8 as fol-
lows. The joint distribution of (q;: i €I} is the same as
that under 8. Under &, g, =P with probability 1 for all
i e 1. With this change, we have C=A=ooand G=E=0.
Hence, Conclusion 1 holds because G+H <E+F, whereas
A+ B=C+D.

Next, assume that Assumption 2 holds for all scoring
rules. Let v =w/(2n). Under Assumption 2, each gi 4;, 5, (%)
is continuous at x =k, and g a8 = 0 for k=0,1. For
each i and each k=0,1, let & ; ¢ 10,1} be close enough 1o
k so that gy a5 () =7 Let & be defined as follows. The
joint distribution of |g; ielf) is the same as that under
5. Under &, g, =t,,; with probability 1 for all i € I. With
this change, we have that C « oo because & gives 0 mass
to extreme forecasts in the coordinates in I. Also, for j € JC.
G < nmaXer Lu), a5 by, ) SV = w/2. So, Conclusion 2
holds. ) :

Finally, suppose that all of the g-scoring rules are contin-
wous. Then all of the h-scoring rules are continuous, and all
of the randomized rules above are nonrandomized. 1f the
nonrandomized rule g is coherent, the proof is complete. If
the forecasts in q are not coherent; but are weakly Bayes,
then Theorem 3 says that there are coherent, forecasts that
have the same total score in every constituent and hence
stricfly dominate p. If q are nejther coherent; nor Bayes, at
least they produce a finite score in every constituent, and
they strictly dominate py, .-« Pu- Now, apply Lemma 12 to
q producing another nontandomized rule that is coherent,
and strictly dominates g, and hence strictly dominates p, 80
that Conclusion 3 holds. O

Prooe oF CorROLLARY 1. 1f the forecasts are coherents,
no randomized forecast dominates the forecasts. The con-
trapositive of the second part of Theorem 2 says that the
forecasts are weakly Bayes.

If the forecasts are weakly Bayes, Lemma 1 says that the
forecasts are coherent;. U

Proor oF COROLLARY 2. If the forecasts are coherent, 0O
nonrandomized forecast dominates the forecasts. The con-
trapositive of the third part of Theorem 2 says that the fore-
casts are weakly Bayes.

1f the forecasts are weakly Bayes, Lemma 1 says that the
forecasts are coherenty. T :

Theorem 1
Proor or THroREM 1. Assume that we have conditional

forecasts for the pairs of events in a collection % and that
the forecast for each pair (A.B) € € is scored by a strictly
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Ezﬁerl S:I(:éh;g gule {20, 2,85 81,4, g) that satisfies Assump-
. Bver i isfi
oaption 3. y strictly proper scoring rule satisfies
For the first claim in Theorem 1,

1, apply Coroll 1t
conclude that the forecasts are coherent, if and onlgazl?f the;
?é‘ecz«)ve:lkg i?i;lyes.tg"or the second claim, apply Corollary 2

nclude that the forecasts i i
ey mee wealdy Bages, are coherent, if and only if

For either claim, appl
, apply Lemma 2 to conclude that fo
are weakly Bayes if and only if they are coherent;. Sécasts
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